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Abstract

The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial mono-

layer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between

blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This ‘‘blood-brain barrier’’

function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary

cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug

transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an

overview of established in vitro blood–brain barrier models with a focus on their validation regarding a set of well-

established blood–brain barrier characteristics. As an ideal cell culture model of the blood–brain barrier is yet to be

developed, we also aim to give an overview of the advantages and drawbacks of the different models described.
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Introduction

The blood–brain barrier

The small capillaries of the brain constitute unique
morphological and functional units that serve a
number of different roles. The capillaries have to
supply the nervous tissue with nutrients and oxygen,
they have to participate in the maintenance of water
and electrolyte balance in the brain interstitial fluid
and they must protect the neurons from potentially
harmful substances present in the blood. The barrier
function of brain capillaries, the blood–brain barrier
(BBB), is primarily due to the presence of complex
tight junctions and to a specific expression pattern of
different solute carriers (SLCs) and ABC-type efflux
transporters. The capillaries of the brain are complex
structures, consisting of several cell types (see Figure 1).
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The endothelial cells constitute the capillary wall and
thus the actual barrier, but the endothelial cells are
surrounded by pericytes (coverage estimated to be
�30%).1 The endothelial cells and pericytes are sur-
rounded by a basement membrane, and astrocyte end-
feet ensheath the abluminal side of the capillaries with a
coverage estimated at 99%.1

Both pericytes and astrocytes regulate the phenotype
of the endothelium, through mechanisms not yet fully
understood but involving cell–cell communication via
soluble factors and possibly also direct contact inter-
actions.2,3 The brain capillary endothelial cells (BCEC)
and the surrounding accompanying cell types thus con-
stitute the ‘‘neurovascular unit’’ (NVU), a term reflect-
ing the specialized and unique cellular structure of the
brain microvasculature.

There is great interest in generating in vitro models
reflecting the properties of the BBB. An ideal in vitro

model of the BBB would allow mechanistic studies of
BBB tight junctions, transporters, enzymes, macromo-
lecular and immune cell trafficking and signaling and be
suitable for rapid screening of BBB permeability for
new central nervous system (CNS) drug candidates.

Validation markers for in vitro BBB models

A set of validation markers was chosen to compare the
different in vitro models in this review. The markers are
shown in Table 1.

The markers shown in Table 1 are not a complete set
of BBB characteristics. An important issue is that
knowledge about the in vivo BBB is still lacking,
which makes it difficult to firmly establish the features
that an ideal BBB model should possess. Recent studies
focusing on the BBB transcriptome and proteome are
beginning to accumulate knowledge, which in time may
provide a more complete fingerprint of the BBB for the
models to mimic.43–51 While no model exactly mimics
the in vivo BBB expression of enzymes, transporters,
receptors, and structural proteins, they can nevertheless
be useful tools. The validation markers chosen in this
study have all been shown to have functional import-
ance at the BBB, which makes their expression and
function in the model important, at least for studies
concerning subjects related to this characteristic.

An important feature of BBB models is high junc-
tional tightness. This is often measured as transen-
dothelial electrical resistance (TEER). TEER obtained
by separate groups in separate studies may differ some-
what, not only because of differences in actual junc-
tional tightness but also because of differences in
measuring equipment (chopstick electrodes, cup elec-
trodes, impedance measurements), temperature, and
handling of the cells during measurements.52 TEER
may also be difficult to translate to a functional esti-
mate of tightness, as the tightness of the endothelial
monolayer depends both on the composition of the
tight junction complexes and on the size of the com-
pound of interest. Validation of functional tightness
can also be performed by permeability studies with
hydrophilic tracer molecules such as Lucifer yellow
(444Da), sodium fluorescein (376Da), sucrose (342Da),
or mannitol (180Da). TEER correlates with permeability
for a given small hydrophilic molecule,53–58 but the cor-
relation depends strongly on the size of the molecule and
the experimental design (shaking/no shaking, change of
medium, sampling during the experiment, single point
estimation/steady state calculations). Thus, the optimal
characterization of paracellular permeability should
include both TEER and tracer flux. Expression and junc-
tional localization of specific tight junction proteins are
related characteristics. Tight junctions exist in a range of
different tissues and the specific combination, especially

Figure 1. Schematic overview of the structure of the

neurovascular unit. The endothelial cells of the brain capillaries

are covered (�30%) with pericytes, embedded in the basement

membrane of both endothelial cells and astrocytes.

The endothelium and attached pericytes are covered almost

completely by a surrounding layer of astrocyte endfeet.

Communication between the cell types of the neurovascular unit

ensures that the brain endothelium maintains the blood–brain

barrier specific phenotype. Modified from Lægemiddelforskning

2015 (http://www.farma.ku.dk/index.php/Laegemiddelforskning-

2015/11840/0/).
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of claudins, gives the junctional complex its specific prop-
erties.59,60 Claudin-5 has been established as a tightening
claudin with high BBB expression, and loss of claudin-5
causes BBB leakage of small molecules.9 Thus, claudin-5
expression is essential in a BBB model if it is to be
used for studying transport- or tight junction-related
phenomena.

Efflux transporters of the ABC family and SLCs play
essential roles in the BBB permeability of small mole-
cules, both endogenous compounds and xenobiotics.2

This makes their expression, correct localisation, and
functionality important validation characteristics for a
BBB model, at least if the model is to be used for BBB
permeability screening, CNS-toxicity studies, pro-drug
formulation studies, or studies of nutritional status of
the BBB. Validation can be performed via protein or
mRNA expression studies, but functional validation
with accumulation or bi-directional transport of
model substrates and inhibitors should be performed
if the model is to be applied in studies where trans-
porters may have a direct influence on the outcome.

Macromolecule transport across the BBB is more con-
troversial. Several receptor systems potentially able to
mediate transcytosis and thus CNS delivery of ligands
or compounds conjugated to ligands have been investi-
gated including insulin receptor, LRP-1, LDL-receptor,
leptin receptor, glutathione receptor, diphtheria toxin
receptor, and transferrin receptor61–68 (for review of
receptor systems applied for brain targeting, see litera-
ture69). Of these, the most studied receptor system
shown to facilitate CNS delivery of clinically relevant
doses in vivo is the transferrin receptor.35,70 LRP-1 has
also been utilized to deliver therapeutics across the
BBB, for instance by conjugating paclitaxel to the
LRP-1 substrate, angiopep-2, which caused a signifi-
cant increase in the brain uptake and survival of
tumor implanted mice.71,72 Similar results have been
demonstrated with angiopep-2 coupled to monoclonal
antibodies or doxorubicin.73,74 However, controversies
exist regarding LRP-1 expression in brain endothelial
cells, where some studies have shown that it is mainly
found in pericytes,51,75,76 whereas others show

Table 1. Blood–brain barrier validation markers.

Category Property Relevance Validation Key
references

Validation of cell

lineage

Monolayer of thin

cells with large

surface area

All studies Visualization, F-actin staining 4,5

Expression of

endothelial markers

Von Willebrand’s Factor/PECAM-1 6–8

Tight junctions Occludin

claudin-5

ZO-1

Studies of tight junctions –

transendothelial

transport and uptake

studies – Cell polarization

mRNA and protein

expression – localization

9–11

High junctional

tightness

TEER and permeability measurements 12–16

Efflux

transporters

P-pg Transendothelial

transport and uptake

studies – drug delivery to/

through the BBB – toxicity

mRNA and protein expression –

Cellular uptake or efflux in absence/

presence of inhibitors – bi-directional

transport studies

17,18

BCRP 19–22

Mrp 23–25

SLC expression Glut-1 Transendothelial

transport and uptake

studies – drug delivery to/

through the BBB. Brain

nutrition studies

mRNA and protein expression –

Cellular uptake in absence/presence of

inhibitors – transendothelial transport

studies

26–28

LAT-1 29,30

MCT-1 31–33

Receptor

systems

Transferrin receptor Studies of receptor-

mediated transport, brain

nutrition studies

mRNA and protein expression – trans-

ferrin uptake – transendothelial trans-

port of iron

34–36

Responsiveness

to regulation

from NVU cells

Induction by astrocytes Studies of cell regulation

and NVU signalling

Regulation of TEER, P-gp expression

and cell morphology

37–40

Induction by pericytes Regulation of TEER,

proteins involved in

vesicular transport

41,42
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expression in endothelial cells.77–79 The transferrin
receptor is widely agreed to be highly expressed in
brain endothelial cells in vivo, which makes the trans-
ferrin receptor a good validation target when setting up
a new model.

A brief history of in vitro BBB model development

Efforts to generate cell cultures of BCEC started in the
early 1970s with isolations of brain capillaries.80,81

A combination of mechanical homogenization of brain
tissue and sucrose gradient centrifugations yielded pure
and intact brain capillaries, which could be used directly
to study BBB properties.81 The isolation techniques have
since been modified with the use of filtration steps
instead of, or in combination with, centrifugation, and
isolated capillaries have been used in a number of func-
tional assays to quantify P-glycoprotein (P-gp) activity
and tight junction integrity as well as studying
transporter regulation and other properties.24,79,82–84

The methods for isolating brain capillaries were further
developed to yield isolation of primary endothelial
cells.4,85–87 Isolated brain capillaries were treated with
a mixture of enzymes to degrade the basement mem-
branes, remove the pericytes, and release the endothelial
cells. These cultures were based solely on endothelial
cells without induction by other cells of the neurovascu-
lar unit (see Figure 2).

Debault and Cancilla87 reported that co-culture of
isolated endothelial cells with C6 glioma cells induced
g-glutamyl transpeptidase activity in the endothelium,
which was otherwise lost in culture. Furthermore, Tao
et al.88 prepared co-cultures of endothelial cells on
coverslips in proximity to an astrocyte cell layer and
showed an increase in tight junction length and com-
plexity by freeze fracture studies. Dehouck et al.89 used
a co-culture approach in studies with bovine endothe-
lial cells and rat astrocytes seeded on opposite surfaces
of permeable membranes in transwell culture inserts
(contact-co-culture) (see Figure 2). This caused a
tightening of the cell junctions as reflected by an
increase in TEER to approximately 660� cm2 as well
as better retention of g-glutamyl transpeptidase acti-
vity. The ability of astrocytes to increase TEER in
endothelial cell cultures has been demonstrated in
numerous later studies, both with contact and non-con-
tact co-cultures (astrocytes seeded on the bottom of the
plate below the filter insert) and with mono-cultures of
endothelial cells cultured in astrocyte-conditioned
medium.5,90–96 More recently, pericytes have been
included in some BBB models either as a replacement
for astrocytes or in triple culture with astrocytes and
endothelial cells.97–103 The endothelial cell/pericyte/
astrocyte triple cultures have shown slightly higher
TEER values than corresponding endothelial

cell/astrocyte co-cultures in studies on rat primary
cells, but the exact mechanisms of junctional regulation
remain to be established.

The years of model development have resulted in a
range of well-established and characterized models run
on a routine basis in different laboratories. These are
based on pig,104–106 bovine,89,90,107 rat,96,98 and mouse
endothelial cells.108–110 These models of non-human
origin have provided a wealth of information on the
physiology and pathophysiology of the BBB and have
allowed very valuable cross-validation between models.
Human tissue is difficult to obtain on a regular basis,
which has limited the development of primary cultures
of human brain endothelial cells and cell-based human
models.111–113 However, two different methodological
approaches to circumvent this problem have been
established. Different groups established and character-
ized immortalized human brain endothelial cells114,115

and three different groups have published BBB models
based on stem cell-derived endothelial cells.116–118

Aim of the review

Many of the models generated during the past 40 years
continue to be used in different research groups to ana-
lyze several aspects of BBB biology and drug targeting.
However, none of the models applied behave in exactly
similar ways, and small differences in the way the indi-
vidual laboratories handle the models can make it a
challenge to obtain a clear overview of the benefits
and drawbacks of the various in vitro BBB-models.

The aim of this review is to give an updated overview
of in vitro models of the BBB, to aid in navigating and
interpreting the literature, and in choosing the most
practical and appropriate models for particular pro-
jects. We have selected a number of commonly used –
as well as newly developed models derived from mouse,
rat, bovine, porcine, and human endothelial cells, and
assessed these against a pre-defined set of BBB valid-
ation markers including endothelial phenotype, marker
protein expression profile, and function. This may pro-
vide a clearer overview of the strengths and weaknesses
of commonly applied models and point towards ques-
tions still unanswered.

Mouse models – Immortalized and pri-
mary mouse brain endothelial cultures

Primary cultures of mouse brain endothelial cells must
be freshly isolated prior to experiments and show vari-
ation from batch to batch. Coisne et al.109 reported a
primary cell co-culture model with mouse endothelial
cells and astrocytes, which presented classic BBB char-
acteristics, such as occludin, claudin-3, claudin-5, and
P-gp expression. The model had high junctional
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tightness with TEER averaging almost 800� cm2 and
sucrose permeability of 4.5� 10�6 cm/s (see Table 2).
However, TEER measurements of this magnitude are
rarely reported in studies on mouse primary endothelial
cells, and TEER values of 100–300� cm2 are more
commonly reported.42,119–121 Thus, considerable effort
has been invested in the generation of immortalized
mouse brain endothelial cell lines, which have the
advantage of being stable for a number of passages
and may yield a large number of endothelial cells
with the same genetic and phenotypical characteristics.

Furthermore, the established protocols for cell isolation
and immortalization can be used to generate BCEC cell
lines from genetically modified animals. Work by the
Risau group122 resulted in the first mouse brain endo-
thelial cell lines generated by immortalization with
Polyoma middle T antigen. bEND.5 and bEND.3 are
commercially available cell lines based on this immor-
talization strategy; however, both cell lines generally
display low TEER (around 50� cm2).123–125 Forster
et al.108,110,126 generated the alternative cell lines,
cEND and cerebEND, from mouse cerebral and

Figure 2. Commonly used configurations used for culture of brain endothelial cells. Mono-culture: Brain endothelial cells are grown

on the upper surface of permeable supports in a two-compartment cell culture system. Media may be added astrocyte-conditioned

medium to promote growth and differentiation in the absence of the other cell types of the neurovascular unit. Non-contact co-

culture: The endothelial cells are seeded on the upper surface of the support, while astrocytes (or other cell types, often pericytes) are

seeded at the bottom of the culture well. This configuration allows for induction of the endothelium by diffusible factors from the

‘‘feeder cells’’ at the bottom of the well, while the insert can be removed after culture for experiments, which can be performed on

endothelial cells only. Contact co-culture: Astrocytes (or other cell types) are seeded on the lower surface of the support with

endothelial cells on the upper surface. This may allow for direct contact between the opposing cell types. A drawback of the

configuration is that the two cell types cannot readily be separated in experimental protocols employing Western blotting or

transport and accumulation studies. Triple culture: This configuration includes in its most common form endothelial cells seeded

on the upper surface of the support, pericytes seeded on the lower surface, and astrocytes seeded on the bottom of the culture

wells. This configuration mimicks the cell arrangement at the neurovascular unit, and allows for interactions between all three cell

types. However, due to the different cell types involved, this configuration is also more demanding in terms of workload and

experimental skills.
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cerebellar capillaries, respectively (see Table 2). Both
cell lines form monolayers and show spindle-shaped
morphology.110,126 The cEND cell line has TEER vary-
ing from 300 to 800� cm2 and strong occludin and
claudin-5 expression at the tight junctions. The higher
electrical resistance of the cEND cell line corresponded
to lower permeability of FITC-Dextran 4, 10, 70, and
500 kDa,110 as compared to bEND.3, but functional
tightness has not been characterized using small mol-
ecule tracers. Both cell lines, cEND and cerebEND,
express endothelial cell markers and junctional proteins
(Pecam-1, VE-cadherin, claudin-5, occludin, ZO-1) as
shown at the mRNA and protein level.110,127 Low levels
of claudin-1, claudin-3, and claudin-12 were detected
at the mRNA and protein levels in cEND and
cerebEND.126,128–130

cEND cells respond strongly to glucocorticoids by
induction of BBB properties. Glucocorticoids induce
cytoskeletal rearrangements, regulate tight junction
proteins occludin and claudin-5, and cause TEER to
increase up to 1000� cm2.110,132–134

The cerebEND model has been further developed
and co-cultured with an immortalized rat glial cell
line (C6), which caused a slight increase in TEER.130

The presence of P-gp, breast cancer resistance protein
(BCRP) and multidrug-resistance protein-4 (Mrp-4)
has been demonstrated in cerebEND cells by Western
blot and immunofluorescence, but has not been shown
in the cEND cell line130 (see Table 3). Functional
tests in uptake assays with specific substrates for P-gp
(calcein-AM), Mrp-4 (fluo-cAMP), and BCRP
(Bodipy-FL-prazosin) showed changes in transporter
activity due to oxygen/glucose deprivation (OGD)
and due to co-culture of cerebEND cells with C6 astro-
cytoma.130 Expression of glucose transporter-1 (Glut-1)
has been demonstrated in cEND and cerebEND at the
mRNA and protein level.126,131

Both the cEND and the cerebEND cell lines
respond to inflammatory stimuli. Treatment of the
cEND and cerebEND cells with TNFa resulted in
decreased tight junction protein expression and
lower TEER.126,133 TNFa induced the expression of
inflammatory stress markers including VCAM-1
and ICAM-1 in both cEND and cerebEND.126

Moreover, cEND treated with serum from multiple
sclerosis patients showed decrease in occludin, clau-
din-5, and VE-cadherin levels135 and increased secre-
tion of cytokines and growth factors, such as Ccl12
and Csf3.136

In summary, both in vitro models cEND and
cerebEND have proved useful tools in studies of regula-
tion of BBB protein expression under normal and patho-
physiological conditions. Both models still need to be
characterized regarding the expression and activity of
SLC-transporters such as large neutral amino acidT
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transporter (LAT-1) and mono carboxylic acid transpor-
ter-1 (MCT-1). Moreover, the effects of co-culture with
pericytes on barrier tightness, TJ expression, transporter
expression, and general endothelial phenotypic traits
need to be further investigated.

Rat models – Mono-, co- and triple
cultures of rat BCEC

Rat brains were the first source of BCEC for develop-
ment of BBB models.85 Contaminating pericytes pre-
sented a major problem for primary rat BCEC
cultures, and different methods have been employed
to increase the purity of the endothelial cultures.137,138

Selection with the P-gp substrate, puromycin, proved
successful139 and is now included in the culture proto-
col in a number of laboratories.55,93,140,141 Puromycin is
typically present during the first two to three days of
culture. This leads to tighter in vitro models,139,140

which may be caused by a more coherent endothelial
monolayer due to the absence of pericytes.
Alternatively, the higher resistance may be due to a
selection of capillary endothelial cells over endothelial
cells from larger microvessels.142 Rat models have been
applied in different versions: mono-cultures of endothe-
lial cells have been widely applied, but most recent
studies use co-cultures- either endothelial/astrocyte
co-cultures or endothelial/astrocyte/pericyte triple cul-
tures. Both purified type-1 astrocytes97 and primary
mixed glial cultures96,139 have proven efficient in the
induction of a BBB phenotype in rat primary endothe-
lial co-cultures, and models based on astrocyte co-
cultures typically present well-characterized BBB
models (see below).55,93,141 The triple cultures including
pericytes were developed to further mimic the neuro-
vascular unit.97,98 Initially, it was shown that inclusion
of pericytes caused a greater differentiation of the brain
endothelial cells than astrocyte or pericyte co-culture
alone,98 and since then the model has been applied in
13 published papers regarding oxidative stress,143,144

amyloid-ß toxicity,145 and permeability screening146–148

amongst others.
Rat models generally display low to medium

TEER, often around 100–300� cm2 depending on the
culture method (mono-culture, astrocyte/pericyte
co/triple culture, induction with cAMP and/or gluco-
corticoids).58,96,97,140,141,147–154 However, several studies
also report that rat models can reach TEER around
500–800� cm2 under optimal culture condi-
tions.55,93,97,145,155 This translates into permeabilities
of sodium fluorescein, Lucifer yellow, and sucrose
around 2–19� 10�6cm/s in the models displaying
lower TEER,96,97,140,141,147,150,156 whereas permeabilities
in the range of 0.8–3� 10�6cm/s have been reported in
the high TEER models55,145,155 (see Table 4).

These high TEER-low permeability models have
only been achieved using the co- and triple
cultures.55,93,97,145,155

The rat models have been shown to express tight
junction proteins claudin-5, occludin and ZO-1 in
mono-cultures,140,150 astrocyte co-cultures,55,141,151

and triple cultures,97,155 where claudin-5 and ZO-1 pro-
tein expression levels are increased relative to mono-
cultures.97 Also claudin-1, -3 and -12, and ZO-2 have
been shown at either mRNA or protein level.96,157

Data on the rat BBB transcriptome45 and ABC
transporters at the rat BBB158 have been obtained on
isolated rat brain microvessels and isolated BCEC.
Several BBB proteins were found to be down-regulated
in mono-culture, notably Glut-1 (39 fold), P-gp (MDR-
1A) (14 fold), and transferrin receptor (9 fold).159

Similar down-regulation has been observed in an endo-
thelial/astrocyte co-culture model, where P-gp, trans-
ferrin receptor, Mrp-4, and Glut-1 expression levels
were largely reduced upon six days of co-culture,
whereas expression of BCRP, Mrp-1, and insulin recep-
tor was retained.58 Although down-regulated, expres-
sion of a range of ABC transporters including P-gp,
BCRP, and at least one isoform of Mrp is still evident
at the mRNA level, protein level or both, in rat models
using mono-cultures,160 astrocyte-co-cultures,58,96 and
triple cultures.97,153 Functional P-gp expression has
been well characterized in both astrocyte co-culture
models and the triple-culture models.55,93,96,97,141,151

Bi-directional transport studies with rhodamine123
demonstrate vectorial transport favoring the brain-to-
blood direction with an efflux ratio of approximately
2.5 in the triple-culture model,97 whereas similar studies
in the astrocyte co-culture models have shown efflux
ratios around 1.7 for rhodamine 123141 and 6.1 for
amprenavir.58 Functional P-gp expression is further
demonstrated by apical uptake studies with P-gp sub-
strates showing increased uptake when P-gp inhibitors
were co-administered55,96,141,153,156,160 (see Table 5).

The functionality of BCRP on primary rat brain
endothelial cells has been shown in the astrocyte co-
culture model, both by accumulation assays96 and by
bi-directional transport assays,58 in both cases by co-
application of the BCRP inhibitor, Ko143.

The expression of glucose and amino acid trans-
porters was demonstrated in primary cultures of brain
endothelial cells,97,159,161–163 but few rat BBB culture
models have been characterized for SLC transporter
functionality. Active glucose uptake was described in
primary rat brain endothelial cells, which was positively
modulated by n-3 long-chain polyunsaturated fatty
acids.162,163 Functional amino acid uptake was also stu-
died in rat primary models.161,164

There could be several reasons for the scarcity of
functional studies on SLC transporters in BBB
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models. Influx transporters, such as Glut-1, are more
sensitive to down-regulation by serum-free monolayer
culture conditions than efflux pumps.159 Garberg
et al.166 suggested that the in vitro BBB models tested
were not tight enough to allow estimation of the trans-
cellular component of small molecule transport of glu-
cose and amino acids in permeability assay settings. It
remains to be seen whether the newly described and
tighter BBB models will be better applicable in uptake
and especially in permeability assays for influx trans-
port studies.

An alternative triple-culture model including neu-
rons instead of pericytes has been developed. This
showed increased g-glutamyl transpeptidase activity
and slightly increased junctional tightness as compared
to an astrocyte-endothelial co-culture model.154 The
average TEER of the triple culture was 250–
300� cm2, which is still below the TEER reported in
the tightest rat models.154

A major advantage of the rat BBB models described
above is that syngeneic co-cultures can be established
and results obtained on rat BCECs can be correlated
with in vivo data in the same species and even strain of
rats. The genome and transcriptome of rats are well
studied, and a large set of antibodies are available for
rat antigens. The development of a complex BBB
model, like the triple culture is time-consuming and
needs expertise, therefore a patented frozen ready-to-
use kit version of the rat endothelial/pericyte/astrocyte
model was developed and successfully used in different
BBB studies.144,147–149

Bovine models – Astrocyte co-culture
models develop high junctional
tightness and express efflux transporters

Bovine brains have been used as a source for BCEC
since 1983.4 Protocols for the generation of bovine

Table 3. Mouse in-vitro models of the blood–brain barrier. Receptor and transporter expression and function.

Model type

ABC transporter

expression/function

Vectorial net

transport of

ABC substrates

TFR

expression/

function

LAT-1

expression/

function

Glut-1

expression/

function

MCT-1

expression/

function

Selected key

references

Primary mouse

BCEC/astrocyte

coculture

P-gp expression (WB) – – – – – 109

cEND (immortalized

mouse cerebral

endothelial cells)

– – – – WB – 110

cereBEND

(Immortalized

mouse cerebral

endothelial cells)

P-gp, BCRP and

Mrp-4 expression

(ICC, mRNA, WB)

– – – mRNA, WB

(low base levels,

upreg. by OGD)

– 126,130,131

–: not investigated; ICC: immunocytochemistry; WB: Western blotting.

Note: The permeability value of the smallest tested compound in the study is given.

Table 4. Rat in-vitro models of the blood–brain barrier. Morphology, tightness and astrocyte/pericyte induction.

Model type

Endothelial

morphology

Junction

Claudins

�TEER

(Ohm � cm2)

(mean values)

Permeability

10�6 (cm/s)

Occludin/ZO

proteins

Astrocyte

induction

Pericyte

induction

Selected

key

references

Primary rat

BCEC/astrocyte

co-culture

Monolayer

Spindle

shape

5 (ICC,WB)

low levels

of 12 (mRNA)

300–600

(Hydrocortisone)

1.4 (Sucrose)

4.3(Lucifer

yellow)

Occludin

(ICC, WB)

ZO1 (ICC, WB)

Increase

in TEER,

lowering

of Pflourescein

– 93,96,98,

141,157

Primary rat

BCEC/astrocyte/

pericyte triple

cultures

Monolayer

Spindle

shape

5 (ICC,WB) 350–723 2–4

(flourescein)

Occludin

(ICC, WB)

ZO1 (ICC, WB)

Increase

in TEER,

lowering

of Pflourescein

Increase

in TEER

97,98,

145,155

–: not investigated; ICC: immunocytochemistry; WB: Western blotting.

Note: The permeability value of the smallest tested compound in the study is given. Astrocyte(þ); mixed glial culture dominated by astrocytes.
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BCEC differ between studies and laboratories, but two
approaches dominate:

1. Size-selective filtering of microvessels followed by
culture and use of first passage endothelial cells
giving approximately 20–30 million cells per
brain.53,56,91,107,167,168

2. Seeding of undigested microvessels followed by sub-
culture up to passage 7 of endothelial clones sprout-
ing from the capillaries.89,95,169

The subculture of endothelial cell clones expanded the
yield of endothelial cells per brain by several fold and
lowered contamination from pericytes and non-capil-
lary endothelial cells, thus making the model more suit-
able for high-throughput studies.90

Most studies apply the bovine brain endothelial cells
in contact or non-contact co-culture with astrocytes,
but a triple co-culture including endothelial cells, peri-
cytes, and astrocytes has also been developed giving a
slight reduction in Lucifer yellow permeability.101

Primary cultures of bovine BCECs display high
TEER both in mono-cultures (up to averages
around 800� cm2)5,170 and in co-cultures with astro-
cytes (averages often exceeding 1000� cm2 up to
2500� cm2)53,89–91,107,166,168 with values on single filters
up to 3000� cm2.53 This reflects a high expression
and junctional localization of claudin-5, ZO-1, and
occludin.5,63,90,95,107,171–175 Small molecule permeability is
reported in the range of 0.4–15� 10�6cm/s depending on
the compounds examined, the methods applied, and the
TEER of the model5,53,63,–89,91,95,101,107,166,168,171,176–178

(see Table 6).
The highly differentiated junctions make the model

useful for examination of tight junction modulation

and studies of passive permeability of drug
compounds.56,149,174,175,179–187

P-gp has been shown to be functionally active in the
cultured bovine endothelial cells both by accumulation
assays and by bi-directional transport experi-
ments.53,101,167,189–194 Protein expression and functional
activity of BCRP and Mrp-1, -4, -5, and -6 have also
been demonstrated.25,53,195–197 Mrp -4, -5, and -6
mRNA transcripts were detected in bovine brain endo-
thelial cell mono-cultures and in co-culture with glial
cells, with Mrp-6 being up-regulated in co-culture with
pericytes.197 The same transcripts were found in endo-
thelial cells in triple culture with pericytes and glial
cells101 (see Table 7). Warren et al.158 profiled mRNA
expression in a range of ABC transporters compared to
human expression levels. The relative expression pro-
files were comparable between human and bovine brain
endothelial cells, although the absolute expression
levels varied considerably.

Bovine BBB models do not always perform well
regarding transporter activity and high junctional tight-
ness, and substantial variations occur between and even
within laboratories utilizing the models. For instance,
many reports have shown bovine BBB models with
TEER values in the range of 30–150� cm2 and/or
lack of functional activity of both ABC and SLC-trans-
porters known to be present at the BBB
in vivo.149,166,173,198,199 Intra-laboratory variations are
evident in a series of publications by the group of de
Boer where TEER varies from high values around
800� cm2 to around 150–300� cm2,19,187,192,193 using
the same model in the same laboratory. This is even
clearer in a study by Helms et al.,53 where TEER aver-
ages varied from 327� 30� cm2 to 2555�399� cm2

across model batches within the same study. This

Table 5. Rat in-vitro models of the blood–brain barrier. Receptor and transporter expression and function.

Model type

ABC transporter

expression/function

Vectorial net

transport

of ABC substrates

TFR

expression/

function

LAT-1

expression/

function

Glut-1

expression/

function

MCT-1

expression/

function

Selected key

references

Primary rat

BCEC/astrocyte

co-culture

-P-gp (ICC, WB)

BCRP, Mrp-3,

Mrp-4, Mrp-5

(mRNA)

Inhibitor data

on uptake for all.

ER of 1.8 for

Rhod 123

ER of 6.1 for

Amprenavir

(inhibited by

GF120918)

ER of 7.7 for

Dantrolene

(inhibited by Ko143)

ICC, mRNA,

Tf-Cy3 binding

– mRNA – 58,93,96,141,

157,165

Primary rat

BCEC/Astrocyte/

Pericyte

triple co-culture

P-gp, Mrp-1

(ICC,WB).

Inhibitor data

on Rhod 123 uptake

ER of 2.5 for

Rhod 123

– – ICC, WB – 97,98,145

–: not investigated; ICC: Immunocytochemistry; WB: Western blotting.

Note: The permeability value of the smallest tested compound in the study is given.
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emphasizes the need to thoroughly validate the
models, especially when setting up a model in a new
laboratory.

Bovine models have been applied in several studies
investigating receptor-mediated endocytosis or transcytosis

across the BBB focusing on the RAGE (receptor for
advanced glycation end-products),200 LDL-receptor,63,201

LRP-1,77,202 and the transferrin receptor.65,171,203,204

The bovine models have mostly been applied to
study receptor-mediated transcytosis, paracellular

Table 6. Bovine in-vitro models of the blood–brain barrier. Morphology, tightness and astrocyte/pericyte induction.

Model type

Endothelial

morphology

Junction

Claudins

�TEER

(Ohm�cm2)

(mean values)

Permeability

10�6 (cm/s)

Occludin/ZO

proteins

Astrocyte

induction

Pericyte

induction

Selected

key

references

Primary bovine

BCEC/rat

astrocyte

co-culture

Spindle

(conventional

media)

Cobblestone

(highly buffered

media)

5 (ICC, WB)

1 (mRNA)

600–800

(conventional

media)

1600

(highly buffered

media)

0.5

(mannitol)

Occludin

(ICC)

Increased TEER

and P-gp expression

in coculture with

rat astrocytes

Changes in

endothelial

morphology

in contact

and non-contact

co-culture

– 91,107,

167,188

Primary bovine

BCEC

(clonal selection)/

rat astrocyte

coculture

Spindle shape 1 and 5

(ICC)

800 6–12.5

(sucrose)

ZO-1 and

Occludin

(ICC)

Increased

TEER and

g-glutamyl

transpeptidase

activity in

co-culture

with rat

astrocytes

Slight

decrease

in PLY when

cultured in

non-contact

co-culture

89, 90,101

Primary bovine

BCEC (clonal

selection)

monoculture

Spindle shape 1 and 5

(ICC)

– 5.8

(sucrose)

ZO-1 and

Occludin

(ICC)

– – 95

–: not investigated; ICC: immunocytochemistry; WB: Western blotting.

Note: The permeability value of the smallest tested compound in the study is given. Astrocyte(þ); mixed glial culture dominated by astrocytes.

Table 7. Bovine in-vitro models of the blood–brain barrier. Receptor and transporter expression and function.

Model type

ABC transporter

expression/function

Vectorial net

transport of

ABC substrates

TFR expression/

function

LAT-1

expression/

function

Glut-1

expression/

function

MCT-1

expression/

function

Selected key

references

Primary bovine

BCEC/rat

astrocyte

coculture

P-gp, BCRP

and Mrp-1

(ICC, mRNA)

Inhibitor data

on transport

ER of 2.5 for digoxin

ER of 4.5 for

estrone-3-sulphate

ER of 2.4 for

etoposide

WB

Trans-endothelial

transport of

holo-transferrin

mRNA mRNA – 53,91,107

Primary Bovine

BCEC (clonal

selection)/

rat astrocyte

coculture

P-gp (WB)

Inhibitor data

on uptake

ER of 2 for

vincristine

Trans-endothelial

transport of

radiolabelled

holo-transferrin

High Pleucine

relative to

Psucrose

High PGlucose

relative to

Psucrose

– 89,90,171,177

Primary bovine

BCEC (clonal

selection)

monoculture-

P-gp (ICC,WB),

Mrp-1, -4 and -5 (WB)

Inhibitor data

on Rhod 123 uptake

and quinidine transport

– – – – – 95,178

–: not investigated; ICC: immunocytochemistry; WB: Western blotting.

Note: The permeability value of the smallest tested compound in the study is given.
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permeability, and ABC-mediated efflux, whereas only
few studies have characterized SLC transporter expres-
sion and function in the model. Rapid transcellular leu-
cine and glucose transport have been demonstrated,
which indicated functional expression of LAT-1 and
Glut-1.177,205 LAT-1 RNA is highly expressed in
freshly isolated bovine brain capillaries and induces
tryptophan uptake when expressed in oocytes.29

However, the expression and function of LAT-1 have
not been confirmed in the bovine BBB models, beyond
mRNA expression being detected with conventional
polymerase chain reaction (PCR)107 and indirectly by
a non-sodium-dependent, BCH inhibitable leucine
uptake206 Other amino acid transporters investigated
in the model are the sodium-dependent transporters
B(0,þ) (SLC6A14)206 and excitatory amino acid trans-
porters-1/-2/-3 (SLC1A1-3),168 which were functionally
active with polarized localization at the luminal
and abluminal membrane, respectively. Saturable
acetic acid transport has been shown in bovine brain
endothelial cells, indicative of functional MCT-1
expression.207

BBB models based on primary endothelial cells of
bovine origin are labor intensive and reproducibility
between and even within labs may be an issue. A sim-
plified model has been developed aiming to circumvent
these drawbacks and make the model more suitable for
high throughput screening.95 This led to easier estab-
lishment and culture, while the resulting model still dis-
played sucrose and Lucifer yellow permeabilities
around 6� 10�6 cm/s and expression of P-gp, Mrps,
and claudin-5.95 The model was further simplified to
a ‘‘ready-to-use’’ model, where endothelial cells were
passaged to filter plates and frozen.178 This enables
shipment of the model to other laboratories without
the expertise and routine to establish a BBB model,
while maintaining a BBB phenotype comparable to
the simplified format mentioned above.

The porcine models – Mono-cultures
develop high junctional tightness

Porcine brain endothelial cells (PBEC) were initially
isolated by Mischeck et al.208 Two different isolation
protocols have been developed and optimized in differ-
ent labs. One is based on homogenization of entire
brain hemispheres (after meninges and secretory
regions have been removed) using sterile cutters fol-
lowed by a dispase digestion. The digested suspension
is centrifuged in dextran to separate microvessels from
low-density material, and microvessels are incubated
with collagenase/dispase to free endothelial cells.
These are isolated by centrifugation on a percoll gradi-
ent and subcultured for one passage to increase cell
yield and purity.105,208,209 The other protocol is based

on mechanical homogenization of isolated gray matter
followed by size-selective filtering through sequentially
smaller nylon mesh (150 and 60 mm) to isolate micro-
vessels. These are digested with collagenase/DNAse/
trypsin, and endothelial cells are obtained by culturing
microvessel fragments.106,210 Both methods have been
used and characterized extensively and, although differ-
ent, they have some common characteristics. Porcine
models generally develop very high TEER in both
mono-culture and astrocyte co-culture normally reach-
ing 500 to 1500� cm2.54,92,105,106,210–213 and sometimes
up to 2500� cm2.214,215 This is facilitated by removal of
serum from the culture medium as well as addition
of hydrocortisone.105 The high TEER translates into
low permeability of small molecule compounds
with sucrose permeabilities ranging from 0.2 to 8�
10�6 cm/s57,104,106,209,211,214,216 and similar permeability
of mannitol54,57,104,209,213 (see Table 8). Comparative
studies with mono-cultures versus mono-cultures sti-
mulated with astrocyte-conditioned media and contact
or non-contact astrocyte co-cultures demonstrated that
astrocytic influence increases junctional tightness, clau-
din-5 expression, and activity of gamma-glutamyl
transpeptidase and alkaline phosphatase.54,92,213,215–217

The effect of pericyte co-culture and astrocyte/pericyte
triple culture has also been investigated in porcine
models, where slight TEER increases were observed
when rat or porcine pericytes were included relative
to mono-cultures. However, the inclusion of pericytes
in the triple culture model did not cause an additional
increase in TEER relative to the endothelial/astrocyte
co-culture.213

PBECs express tight junction proteins such as ZO-1
and -2,92,210,222–225 claudin-5,92,106,214,225 and occlu-
din,92,106,225–230 as determined by real time PCR,
Western blotting, confocal- and electron microscopy.
The well-differentiated tight junctions of the model
make it ideal for examining tight junction expression
and modulation, and it has been the model of choice to
introduce impedance analysis as a technique to continu-
ously measure TEER in BBB models.231,232

A recent quantitative proteomics comparison of iso-
lated brain capillaries showed that endothelial cells
from porcine brain capillaries express a range of BBB-
phenotype ABC transporters, with the BCRP:Pgp ratio
closer to that of monkey and human than shown by
rodent brain capillaries.48 This is reflected in the ABC-
transporter expression in porcine models, where P-gp,
BCRP, and Mrps-1 and -4 are expressed at the mRNA
and protein level.106,215,220,228,229 They mediate polarized
transport of P-gp and BCRP substrates228,229,233,234

and limit the accumulation of P-gp, BCRP, and Mrp
substrates.106,215,222,235,236 Efflux transporters are thus
generally expressed and active in the PBEC models,
although subtype specific Mrp functionality including
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polarization of expression has not been investigated in
detail (see Table 9).

SLC expression and function have not been charac-
terized to a great extent in PBEC models. High Glut-1
and some degree of MCT-1 expression have been
shown in isolated porcine brain capillaries,48 but their
expression or functions have not been characterized.
L-Leucine permeability has been shown to be relatively
high compared to sucrose (approximately 12�
10�6 cm/s versus 5� 10�6cm/s), which indicates
LAT-1 expression, but it was not directly attributed
to LAT-1 via inhibition studies or demonstrations of
mRNA or protein expression.106 OAT-1 and OAT-3
(SLC22A6 and 22A8) have been shown to be expressed
at mRNA and protein level in PBECs, and functional
expression was demonstrated as glutaric acid efflux
inhibitable by probenecid.237

PBEC models have been used to study macromolecule
transport through the BBB, focusing mainly on receptor-
mediated transport. Surface expression of transferrin
receptor has been shown in PBECs using binding assays
with radiolabeled transferrin,238 and PBECs have shown
the ability to take up human transferrin labelled with
Alexa-555.215 Other receptors investigated include the
LDL receptor, the LRP-1, the mannose-6-phosphate
receptor, and lactoferrin receptor.64,223,225,239,240

Arylsufatase A has been shown to cross porcine BCEC,
without altering the monolayer integrity. Transport was
low (around 0.02 % of the applied amount) but to some
degree inhibitable by co-administration of mannose-
6-phosphate, which indicated receptor-mediated trans-
port via the mannose-6-phosphate receptor.223 Likewise,
fusing arylsulfatase A with ApoB, ApoE-I, and ApoE-II

caused significant increases in the transcellular transport,
indicative of LDL receptor and/or LRP-1-mediated
transcytosis.64

The human models – Establishment
of models from renewable sources

BBB models based on primary cultured cells from
human tissue have been reported (for instance Bernas
et al.111). However, human brain tissue is difficult to
acquire on a regular basis, which limits the possibilities
to establish BBB models based on primary human
BCEC. Some commercial vendors offer primary cul-
tures of human brain endothelial cells(for instance
Applied Cell Biology Research Institute (Kirkland,
WA, USA) as used by Urich et al.242 and ScienCell
Research Laboratories (San Diego, CA, USA) as used
by Cucullo et al.243), but often with only sparse docu-
mentation on the source. Instead efforts have been
made to create alternative models based on immorta-
lized brain endothelial cells or human-derived stem
cells.114–118 The different human immortalized endothe-
lial cell lines published have different properties. In this
review, focus has been given to the hCMEC/D3 cell
line, as this is the most widespread and well character-
ized of the published cell lines.

The human immortalized endothelial cell line
hCMEC/D3

Since its generation and initial characterization,114

more than 150 publications have applied and further
characterized the hCMEC/D3 cell line, and it is thus

Table 9. Porcine in-vitro models of the blood–brain barrier. Receptor and transporter expression and function.

Model type

ABC transporter

expression/function

Vectorial net

transport of

ABC substrates

TFR

expression/

function

LAT-1

expression/

function

Glut-1

expression/

function

MCT-1

expression/

function

Selected key

references

Primary porcine

BCEC (isolation

with enzymes)

P-gp

Inhibitor data on

uptake and transport

BCRP (mRNA)

– Binding of

radiolabeled

transferrin

High Pleucine

relative to

Psucrose

– – 106,212,

238,241

Primary porcine

BCEC (isolation

including density

centrifugation step)

P-gp (ICC,mRNA, WB)

BCRP (mRNA, WB)

Mrp-1 and -4

(mRNA, ICC)

Inhibitor data

on uptake for all

ER of 2.5

for paclitaxel

ER of 4

for Mitoxantrone

– – – – 104,220,222,

233,234,236

Primary porcine

BCEC in coculture

with rat astrocytes

or astrocyte

cell line

P-gp (WB)

BCRP (WB)

Inhibitor data

on uptake for both

– Uptake of

Alexa-555

conjugated

human

transferrin

– – – 92,215

–: not investigated; ICC: immunocytochemistry; WB: Western blotting.

Note: The permeability value of the smallest tested compound in the study is given.
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a well characterized, easy to use in vitro model of the
human BBB (for a recent review see244).

The hTERT/SV40-immortalized hCMEC/D3 clonal
cell line is derived from human temporal lobe microves-
sels isolated from tissue resected during surgery for epi-
lepsy. hCMEC/D3 cells form a contact-inhibited
monolayer of elongated cells on collagen type I or type
IV. hCMEC/D3 expresses junction-associated IgG-like
proteins such as PECAM-1 and JAM-A, adherens and
tight junction structural proteins such as VE-cadherin,
claudin-3 and -5, and occludin, scaffolding proteins such
as ß-catenin and ZO-1 and -2 as well as the cell polarity
complex Par-3/Par-6/PKCz, which further contributes to
the control of tight junction integrity and apico-basal
polarity.114,124,245–251

hCMEC/D3 cell monolayers express the characteris-
tic tight junction proteins of the BBB252; however, the
expression level of claudin-5, which is important for
junctional tightness, has been reported to be lower
than in intact microvessels,242 although optimal culture
conditions can improve this. This is reflected by TEER
in the range of 30–50� cm2 and permeability for
sucrose, mannitol, urea, sodium fluorescein, and
Lucifer yellow in the range of 20–90� 10�6 cm/s were
initially reported114,124,245,247,253,254 (see Table 10).
Larger molecules have lower permeabilities in the
range of 5–13� 10�6 cm/s for 4 kDa dextrans and 0.2–
0.3� 10�6cm/s for 70 kDa dextrans.114,247 Hence, the
model in its basic state presents a barrier for large mol-
ecules, whereas small molecules relatively easily perme-
ate the barrier.

The barrier properties are dependent on the culture
protocols, and tighter monolayers have been obtained
by activating the Wnt/ß-catenin pathway,124 the
Wnt/planar cell polarity pathway,245 or nuclear recep-
tors.247 Under these conditions, TEER values above
300� cm2 and Lucifer yellow permeabilities in the
range of 10–20� 10�6 cm/s have been
reported.124,247,255 Co-culture with astrocytes and/or
pericytes has also been shown to increase TEER,
although only to a small degree (from 30 to
60� cm2).103 Another approach has been to subject
hCMEC/D3 monolayers to a physiological shear
stress (about 5 dyn/cm2) in a microfluidic device,
which increased TEER to 120� cm2.257

Thus, a number of studies have shown that the junc-
tional tightness of the hCMEC/D3 model may be
improved. Future attempts to improve the tightness
of the model should focus on co-culturing pericytes
and astrocytes either in 2D103 or 3D258 and/or the pres-
ence of shear stress.

One hundred and forty-four SLC transporters have
been detected in hCMEC/D3 cells at the transcript
level, including SLC2A1 (Glut-1), SLC7A5 (LAT-1),
and members of the SLC16 (MCT) family, many of

them regulated by cytokines.254,259 In a proteomics
study, Glut-1 was shown to be expressed at a level simi-
lar to freshly isolated human brain microvessels.252 The
same study also revealed high levels of additional influx
transporters and receptors, including MCT-1, the insu-
lin receptor, and the transferrin receptor (see Table 11).
This study did not detect LAT-1 at the protein level.
However, uptake of gabapentin inhibitable by phenyl-
alanine, BCH, and siRNA-mediated LAT-1 knock-
down has been reported indicating functional LAT-1
expression in the model.260

hCMEC/D3 cells express mRNA of 23 ABC efflux
transporters, including P-gp, Mrp-4, and BCRP.254,261

P-gp and BCRP expression have further been docu-
mented at the protein level,261–263 and P-gp has been
shown to be primarily localized at the apical mem-
brane, where it limits apical to basolateral permeability
of rhodamine.264 This polarized expression is controlled
by the cell polarity complex Par-3/Par-6/PKCz.245

In conclusion, the hCMEC/D3 cell line constitutes
an easy to use, thoroughly characterized model of
human origin, which appears particularly well suited
for drug uptake studies and for unravelling the
response of brain endothelium to human pathogens
and neuroinflammatory stimuli.265 However, its rela-
tively low junctional tightness under routine culture
conditions is still a challenge regarding its use for vec-
torial transport of small molecule compounds and will
require further optimization.

In vitro BBB models generated from
human stem cells

Recently, human brain endothelial cells have been
derived from stem cell sources including human pluri-
potent stem cells (hPSCs)118 and human cord blood-
derived stem cells of circulating endothelial progenitor
and hematopoietic lineages.116,117 These sources could
in principle provide renewable and scalable sources for
human BBB models.

Human PSCs include both human embryonic stem
cells derived from the inner cell mass of human blasto-
cysts266 and induced pluripotent stem cells (iPSCs)
obtained from reprogramming somatic cells to a pluri-
potent state.267,268 BBB-like endothelial monolayers
have been obtained with a co-differentiation protocol,
in which hPSCs were first cultured in unconditioned
media to co-differentiate into a mixture of endothelial
cells and neural progenitor cells. This co-differentiation
environment is hypothesized to create an embryonic-
like brain environment, suitable to induce endothelial
cell expression of some key BBB traits.118 Human brain
endothelial cells were subsequently subcultured and
maintained as virtually pure monolayers on collagen/
fibronectin-coated transwell filters or plates.
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The resulting hPSC-derived brain cell monolayers
develop a restrictive barrier with expression of clau-
din-5, occludin, and ZO-1 localized to cell–cell contact
zones. Monolayers produce baseline TEER values of
250� cm2 but can reach up to 1450� cm2 when co-
cultured with rat astrocytes.118 This translates into
very low sucrose permeabilities of 0.6� 10�6cm/s, simi-
lar to the lowest permeabilities reported for bovine and
porcine models53,92,104 and far below permeability
values reported in primary human models (approxi-
mately 170� 10�6 cm/s269 and below those with
hCMEC/D3 (20� 10�6 cm/s as discussed above) (see
Table 10). In the same study, diazepam permeability
was around 18� 10�6 cm/s resulting in a permeability
dynamic range (diazepam:sucrose) around 40 fold.118

Glucose permeability across the model was around
3.7� 10�6cm/s, approximately seven fold higher than
for sucrose, suggestive of functional Glut-1 expression,
but this has not been confirmed with functional inhib-
ition studies. Protein expression of P-gp, BCRP and
Mrp-1 has been shown with immunocytochemistry,
and uptake and transport studies with rhodamine and
doxorubicin in combination with ABC transporter
inhibitors have shown functional and polarized expres-
sion of efflux transporters118,256(see Table 11).
Combined, these data suggest downstream utility in
drug screening assays, although more validation with
a larger set of transporter substrates is required.
Likewise, receptor expression and function have not

been studied in detail in the model, although a range
of receptors including transferrin, insulin, and LDL-
receptors have been shown at the mRNA level.118

Alternative human stem cell models based on cord
blood-derived stem cells have been developed. These
utilize different differentiation protocols, either based
on pericyte117 or astrocyte116 co-culture. Both models
show endothelial cell phenotype and expression of clau-
din-5, occludin, and ZO-1. The pericyte co-culture
reaches significantly higher junctional tightness than
the astrocyte co-culture with a Lucifer yellow permeabil-
ity around 10� 10�6cm/s and TEER around 180� cm2

compared to a Lucifer yellow permeability of
22� 10�6cm/s and TEER below 60� cm2 in the astro-
cyte co-culture (see Table 10). P-gp, BCRP, and Mrp-1, -
2, -4, and -5 as well as transferrin receptor and RAGE
and a range of SLC transporters including Glut-1 and
LAT-1 were found at the mRNA level in pericyte co-
cultures.117 Astrocyte co-cultures also showed expression
of Glut-1, P-gp and BCRP, and the protein expression
levels of Glut-1 and P-gp were found to be up-regulated
by the astrocytes116 (see Table 11). As with the hPSC-
derived model, the cord blood-derived models still lack
validation regarding functional expression of trans-
porters, efflux pumps, and receptors.

The stem cell-derived models offer the opportunity
to study the dynamic changes that may occur
during BBB development. For example, the current dif-
ferentiation protocol for the hPSCs recapitulates

Table 11. Human in-vitro models of the blood–brain barrier. Receptor and transporter expression and function.

Model type

ABC transporter

expression/function

Vectorial net

transport of

ABC

substrates

TFR

expression/

function

LAT-1

expression/

function

Glut-1

expression/

function

MCT-1

expression/

function

Selected

key

references

hCMEC3/D3

(immortalized

human brain

endothelial cells)

P-gp (mRNA, PROT, WB)

BCRP (mRNA, PROT, WB)

Mrp-1 (mRNA,WB, PROT)

Inhibitor data

on uptake for all

MRP5 (mRNA)

– PROT Not detected

in proteomics

study. However,

uptake of

gabapentin

inhibitable by

LAT-1 inhibition

has been shown

PROT PROT 114,252,260

hPSC

(human pluripotent

stem cells)

P-gp (ICC, mRNA)

BCRP (ICC, mRNA)

Mrp-1 (ICC, mRNA)

Mrp-2, 4 and -5 (mRNA)

Inhibitor data on uptake

and transport for all

– mRNA mRNA ICC,

mRNA,

relatively

high PGlucose

compared

to PSucrose

mRNA 118,256

Cord blood-derived

endothelial

progenitor

cells

P-gp (ICC, mRNA, WB)

Inhibitor data on uptake

BCRP (mRNA)

Mrp-1, -4 and -5 (mRNA)

– mRNA mRNA mRNA mRNA 116,117

–: not investigated; ICC: immunocytochemistry; WB: Western blotting; PROT: MS-based proteomics; BCRP: breast cancer resistance protein; Mrp:

multidrug-resistance protein.

Note: The permeability value of the smallest tested compound in the study is given.
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developmentally relevant in vivo canonical Wnt signal-
ing events between neural progenitor cells and endothe-
lial cells.118,270,271 Similarly, the cord blood-derived
endothelial cells are regulated by addition of Wnt3a
or Wnt7a, resulting in increased TEER compared to
un-stimulated monocultures.117 Furthermore, hPSC-
derived brain endothelial cells exhibit significantly
increased barrier phenotype in response to retinoic
acid (TEER increases up to 2940� 800� cm2),256 a
hormone implicated in BBB regulation.42,272,273

The stem cell-based models could additionally be
used to interrogate other signaling pathways and devel-
opmental events such as those with the interacting cells
of the NVU.116,117,256 Moreover, with the hPSC system,
it would also be possible to model diseased NVU
phenotypes using endothelial and neural cells derived
from patient-specific iPSCs with diseased genetic back-
grounds.274 One caution when using lentivirally repro-
grammed iPSCs is that they exhibit random genomic
integration of pluripotency factors that could poten-
tially affect the ultimate differentiated phenotype.275

However, hPSC-derived brain endothelial cells have
been successfully derived from both human embryonic
stem cells118,266 and iPSCs generated by non-integrating
methods118,276 to avoid such complications.

In conclusion, the stem cell-derived BBB models rep-
resent a promising tool for both mechanistic studies of
human brain endothelial cell biology and as a screening
tool for CNS-drug permeability studies. However, the
models have not yet been extensively characterized,
because of the short time period they have been avail-
able. Hence, future studies should aim at characterizing
these models regarding BBB features as well as validat-
ing the reproducibility and ‘‘ease of culture’’ of the
models.

Conclusion

Techniques for in vitro culture of brain endothelial cells
have been developed continuously over the past 40
years. Endothelial cell cultures have been derived
from a number of species, using a variety of isolation
and culture methods, which have been optimized for
the species in question. This has resulted in a range of
in vitro BBB models with different properties, which
makes comparisons between different studies and plan-
ning of new studies challenging. However, as summar-
ized in this review, the in vitro models have proven to
be valuable tools in studies concerning BBB develop-
ment, physiology, pathophysiology, toxicology, and
CNS-drug development. The right choice of model
for a study will depend on the research question at
hand. Brain endothelial cells of bovine and porcine
origin form tight endothelial monolayers with a high
transendothelial resistance and are suited for

investigations of small molecule transport through the
BBB. They display functional efflux transporter activity
as well as restrictive tight junctions, resulting in vector-
ial transport of P-gp and BCRP substrates, and may
also be suited for studies of polarized localization of for
instance specific receptors or transporters, since the
high junctional tightness helps establish good apical:ba-
sal polarity. Given that a reliable source of animals is
available (abattoir or animal facility), large quantities
of endothelial cells can be obtained allowing screening
studies. On the other hand, the proteins expressed by
bovine and porcine models differ in sequence from their
human homologues and this may in some cases trans-
late to differences in affinity and transport rate.50,158

This also poses a challenge when investigating thera-
peutic antibodies designed to target BBB-expressed
proteins, since these are often designed to react with
human or mouse and rat homologues. Murine or
human endothelial cell culture models may be prefer-
able in these types of studies.

Brain endothelial cell cultures of mouse or rat origin
have the advantage of being from species which are
thoroughly characterized and are often used as first
choice for preclinical studies. While rat and mouse
brains are easy to obtain, the generally low yield of
endothelial cells from these species has been an obstacle
for the routine use of murine endothelial cell models,
although quite advanced endothelial cultures can be
obtained in dedicated laboratories, e.g. the triple co-
culture rat model. Since this model incorporates the
three main cell types of the neurovascular unit, it also
allows detailed NVU-signaling studies. The establish-
ment and characterization of the immortalized mouse
endothelial cell lines such as bEND.3, bEND.5, or
cEND can circumvent the problem of low yield of
endothelial cells if the cell line has the right character-
istics for the given study, but the cell lines have not been
widely used so far. Their potential use in preclinical
studies does however warrant further attention.

Primary cultures of human brain endothelial cells,
reflecting the fully differentiated phenotype, would be
ideal for drug development and preclinical studies. It is
however difficult to obtain fresh healthy brain tissue on
a regular basis. The establishment and characterization
of the human immortalized cell line, hCMEC/D3, have
given researchers a tool for investigating human brain
endothelial cell transporters, receptors, signalling path-
ways, and metabolism without the issues of availability
and variability between isolation batches. The relatively
low tightness of the monolayers formed by the
hCMEC/D3 cells can be improved by optimizing cul-
ture conditions, however not to levels matching the
bovine, porcine, or human stem cell-derived models.
The hCMEC/D3 cells therefore have some limitations
when it comes to vectorial transport studies of small
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molecules, but may perform well in mechanistic studies
of expressed transporters and receptors.

The recent reports describing techniques for the gen-
eration of endothelial cell cultures from human stem
cells are steps towards a human cell culture model of
the brain endothelium. The differentiated endothelial
cells form tight monolayers with high electrical resist-
ance and have functional expression of efflux trans-
porters. The human stem cell models are presently
being characterized and refined and will, if proven to
be easy to handle and reproducible, present great
opportunities for researchers in the field.

Open questions and suggestions
for future studies

Much progress has been made during the last four dec-
ades in the development of in vitro models of the BBB.
The field has advanced in parallel with advances in BBB
biology and our increased understanding of the roles of
the cell types in the neurovascular unit. There are still a
lot of open questions within the field of in vitro BBB
models, and these cannot be answered without a deeper
understanding of the biology of the native barrier/the
neurovascular unit. We have outlined some of these
below, as an inspiration for future research and as a
reminder to those already in the field.

Expression and function of SLC-type uptake
transporters

A recent perspectives paper summarizes research trends
within the field of SLC-proteins and argues that the field
is generally under-studied compared to their biological
relevance.277 A similar argument can be made regarding
SLCs at the BBB. Traditionally, when characterizing
transporter expression in BBB models, the ABC-type
efflux transporters have gained most attention. Thus,
most models today are well characterized concerning
at least P-gp and BCRP expression, whereas it is a
common feature of the in vitro BBB models that SLC
uptake transporters are relatively uncharacterized, or
have low expression levels, as described in the previous
sections. It is known that some marketed drugs are
transported by SLC-transporters, for instance L-dopa
and gabapentin,278 which makes the functional expres-
sion of LAT-1 and other SLC transporters important in
a BBB model for drug compound screening purposes or
for studies regarding regulation of nutrient and micro-
nutrient transporters. Characterization can be per-
formed by a combination of transendothelial transport
experiments in combination with substrate and inhibitor
profiling, as well as immunocytochemistry showing
expression of the transporter in question. Ideally, trans-
porter localization should be confirmed by comparing

the localization in intact capillary endothelial cells with
the localization in endothelial cells in culture. LAT-1 and
Glut-1 are good starting candidates because of their
important physiological functions. However, other
SLC-transporters may be equally important at the
BBB and may have potential as drug targets/trans-
porters. The growing number of studies on the in vivo
BBB transcriptome and proteome will assist in directing
focus to the SLC transporters of highest significance for
future characterization.

The role of other NVU cells, especially pericytes,
in BBB models

Pericytes have proven to be essential for the formation of
the BBB in vivo,41,42 but the effects of pericytes in vitro
vary between BBB models. Results from rat models have
shown increased TEER in triple cultures compared to
astrocyte-endothelial co-cultures.97 A similar TEER
increase was seen in mouse endothelial cells (pericyte
co-culture relative to endothelial mono-culture),42

whereas data from pig models have shown reduced
TEER in endothelial cells co-cultured with pericytes
due to an induction of MMPs.221 The differentiation
state of pericytes in vitro was found to be decisive for
the effect of co-culture, with pericytes treated with bFGF
causing a slightly increased TEER, whereas TGFb-trea-
ted pericytes caused a decrease in TEER.219 However,
pericytes were not found to affect tight junction protein
expression in vivo, where the main effect of pericytes was
to decrease expression of certain genes favoring vascular
permeability.42 Thus, the current understanding of peri-
cyte effects in BBB-cell culture models is incomplete. The
stem cell models may prove to be effective tools to gain
knowledge of signaling effects of pericytes (and other
cells of the NVU) and their importance in different
stages of BBB induction and maintenance, especially if
coupled to detailed transcriptome and proteome ana-
lysis, where induction and silencing of individual genes
and proteins by the different NVU cells at different
development stages can be identified. This kind of know-
ledge may feed back into the routine use of primary cell
cultures to also improve their BBB characteristics. Much
of the induction of primary cell models today is depend-
ent on stimulation by cAMP-analogues and steroids
(hydrocortisone or dexamethasone). The full effects of
these barrier-modulating additives are not known, and
the overall BBB characteristics may be better mimicked
if barrier-modulating agents can be substituted with
induction from NVU cells.

Disease models of the BBB

It is well known that the BBB is a dynamic barrier
that changes properties under different conditions.
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The BBB is affected by different disease states, for
example stroke, Alzheimer’s disease, cancer, and mul-
tiple sclerosis.279–283 Many in vitro studies on the ische-
mic BBB have been performed using oxygen-glucose
deprived culture conditions and thus quite well-vali-
dated models of the BBB during ischemic insults
exist.131,143,284–287

Likewise, several models for the BBB under cancer con-
ditions have been developed, for instance by co-culturing
BCEC with the glioblastoma cell lines, RG-2 or
C6,94,130,155,181,288 and BBB models have been applied to
study adhesion and transmigration of metastatic cancer
cells.289–293 The BBB changes properties during
Alzheimer’s disease, which contributes to- and may even
be a leading cause of neurodegeneration.294,295 In vitro
BBB models have been extensively applied to investigate
changes caused by the Alzheimer’s disease environment
and to investigate the ability of the BBB to transport amyl-
oid beta (see reviews296,297). Using cells from rat and
mouse models of Alzheimer’s disease, it may be possible
to decipher the responses of the BBB during the develop-
ment of the disease, at the molecular and cellular levels.

Diseases caused by gene-disorders have not been
well modelled so far. The human stem cell models
may present possibilities to facilitate development of
new models from iPSCs isolated from patients with
specific CNS-pathologies. Alternatively, mouse and
rat models based on endothelial cells isolated from
knock-out or transgenic animals may provide useful
models for specific disease states, which have been
demonstrated with endothelial cells isolated from
PPAR-alpha-deficient mice.298

The well-documented changes in BBB properties
during different disease states highlight the fact that
the BBB should not be considered a static barrier that
presents the same obstacle for every disease condition.
BBB permeability and drug permeation may change
with different pathologies, as is the case of stroke,
Alzheimer’s disease and some cancer forms, but in
most disease conditions drug permeation remains hin-
dered or even decreases, for instance due to an up-reg-
ulation of P-gp as observed in epilepsy.299 Thus, in vitro
models mimicking different pathologies should be
refined and validated to improve translation of data
to the in vivo settings.
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